TWO NEW GERMACRANOLIDES FROM ONOPORDON LEPTOLEPIS*

ABDOLHOSSEIN RUSTAIYAN†, LILLY NAZARIANS† and FERDINAND BOHLMANN‡

† Center of Organic Chemical Research, National University of Iran, Teheran; ‡ Institute of Organic Chemistry, Technical University, D 1000 Berlin 12, W. Germany

(Received 11 October 1978)

Key Word Index-Onopordon leptolepis; Compositae; new germacranolides.

Abstract—The investigation of the aerial parts of O. leptolepis afforded, in addition to a known polyynaldehyde and onopordopicrin, two further germacranolides. The structures are elucidated by spectroscopic methods and by conversion to the corresponding acetates.

INTRODUCTION

From the genus Onopordon, tribe Cynareae, already several species have been investigated. The roots of seven species afforded mainly C₁₇-acetylenes [1], while the aerial parts also from seven species yielded onopordopicrin [2-4]. Furthermore several flavones have been isolated. Onopordon leptolepis DC. growing in Iran, has not been investigated before. The aerial parts also contain onopordopicrin (2), the aldehyde 1 and two new germacranolides (4 and 6), closely related to 2.

OCHCH=
$$CH[C\equiv C]_2[CH=CH]_2(CH_2)_4CH=CH_2$$
 t
 t , t

$$2 R = H$$
$$3 R = Ac$$

 $4 R = H, R' = COC(Me) = CH_2$

5 R = Ac, R' = COC(Me) = CH,

 $6 R = H, R' = COCHMe_2$

 $7 R = Ac, R' = COCHMe_2$

RESULTS AND DISCUSSION

The extract of the aerial parts of Onopordon leptolepis DC. afforded the known aldehyde 1 and as the main component, onopordopicrin (2) [2-4]. While the ¹H-NMR of the diol could not be interpreted even at 270 MHz, in the spectrum of the corresponding diacetate in $CDCl_3/C_6D_6$ at 50° all signals could be assigned. The observed coupling constants establish the given stereochemistry [2-4].

The less polar fraction afforded in mixture two further lactones, which, however, could not be separated, even after acetylation. High resolution mass spectroscopy of the acetates gave the elemental formulae $C_{21}H_{26}O_6$ and $C_{21}H_{28}O_6$ showing that the two lactones only differ by two hydrogens. The ¹H NMR spectrum of the mixture clearly indicates the presence of a methacrylic and an isobutyric acid ester. All the other signals in the spectrum of the acetates at 50° are very similar to those of the diacetate 3 (see Table 1). The identical stereochemistry at C-8 clearly follows from the observed coupling constants ($J_{7a,8\beta} = 8$; $J_{8\beta,9\alpha} = 10.5$ and $J_{8\beta,9\beta} = 2.5$). Some of the signals are always overlapping; however, by using solvent shift and double resonance experiments all signals could be assigned.

Investigation of further Onopordon species are desirable to see whether these lactones are characteristic of this genus.

EXPERIMENTAL

IR: Beckman IR 9, CHCl₃; ¹H NMR: Bruker WH 270; MS: Varian MAT 711. The fresh plant material was extracted with CHCl₃ and the extract separated first by column chromatography (Si gel, act. grade II) and further by repeated TLC (Si gel, GF 254) using Et₂O-petrol-mixtures as solvents. 1 kg of aerial parts afforded 50 mg 1, 1.5 g 2 and 36 mg 4 and 6 (ca 4:1) (Et₂O-petrol 4:1).

15-Hydroxy-8α-[α-methylacryloyl]-respectively isobutyryloxy-costunolide(4 and 6). Colourless gum, which could not be separated, IR cm⁻¹: OH 3400; γ-lactone 1760, C=CCO₂R 1715, 1640; CO₂R 1740. The mixture was heated for 30 min at 70° in 1 ml Ac₂O. After evapn the residue was purified by TLC (Et₂O-petrol 3:2). The resulting acetates 5 and 7 again could not be separated, colourless gum; MS: M⁺ m/e 376 and 374 (C₂₁H₂₈O₆ and C₂₁H₂₆O₆); -HOAc 316 and 314; 316 and 314 - RCO₂H 228; C₃H₇CO⁺ 71; C₃H₅CO⁺ 69; MeCO⁺ 43.

^{*} Part 190 in the series "Naturally Occurring Terpene Derivatives". For Part 189 see Bohlmann, F. and Suwita, A. (1979) Phytochemistry 18, 677.

Table 1. ¹H NMR data of 2-5 and 7 (270 MHz, TMS as internal standard)

	2 (CDCI ₃)	$3 (CDCl_3/C_6D_6, 50^\circ)$	4	5/7 (C_6D_6 , 50°)	5/7 (CDCl ₃)
1 - H	dd(br) 5.02	dd(br) 4.80		ddq 4.58	m 5.14
2-H	m 2.24	m 2.11		m 1.92	m 2.07
3α-H	m 2.24	m 1.9		ddd 1.71	m 2.07
3 <i>β</i> -11	m 2.6	ddd 2.39		ddd 2.26	m 2.5
5-H	d 4.83	m 4.77		J 4.47*	m 4.94
6β-H	dd 5.13	m 4.77		dd 4.43*	m 4.97
7 x-H	m 3.09	dddd 2.85		dddd 2.61	m 3.11
8β·H	dd(br) 5.20	ddd 5.05		ddd 5.04	m 4.97
92-H	m 2.6	d(br) = 2.51		d(br) 2.48	m 2.5
9β-H	m 2.01	dd 2.32		dd 2.13	m 2.07
13-H	d 6.30	d(br) 6.27	dd 6.38	dd 6.42	d(br) 6.31
13'-H	d 5.78	d(br) 5.65	dd 5.65	đđ 5.67	d(br) 5.79
14-H	s(br) 1.52	s(br) 1.42	s(br) 1.27	s(br) 1.29	s(br) 1.53
15- H 15'-H	d 4.32 d 4.11	s(br) 4.53		d 4.42* d 4.48*	s(br) 4.62
OCOR	s(br) 6.29	dt 6.25	dq 5.29	qq 2.34	s(br) 6.15
	s(br) 5.97	dt 5.77	dq 6.04	d = 1.07	d 1.22
	s(br) 4.36	m 4.73	dd 1.85	d 1.08	s(br) 1.97
OAc		s 1.96 s 1.94		s 1.78	s 2.11

^{*} Overlapping signals.

Acknowledgements—A. R. thanks the Ministry of Science and Education of Iran and the DAAD for financial support.

REFERENCES

1. Bohlmann, F., Burkhardt, T. and Zdero, C. (1973) Naturally Occurring Acetylenes. Academic Press, London.

- Drozdz, B., Holub, M., Samek, Z., Herout, V. and Sorm, F. (1958) Collect. Czech. Chem. Commun. 33, 1730.
- Drodz, B. and Piotrowski, J. (1973) Pol. J. Pharmacol. Pharm. 25, 91.
- Khafagy, S. M., Metwally, A. M. and Omar, A. A. (1977) *Pharmazie* 123.
- Karl, C., Mueller, G. and Pedersen, P. A. (1976) Disch. Apoth. Ztg. 116, 57.

 $J(\text{Hz}): 1,2\beta = 10: 1,2\alpha = 6.5: 1.14 = 1: 2\alpha,3\alpha = 6.5: 2\alpha,3\beta = 3: 2\beta,3\alpha = 12: 2\beta,3\beta = 4: 3\alpha,3\beta = 12.5: 5.6 = 10: 6,7 = 9: 7.8 = 9: 7.13 = 3.5: 7.13 = 3: 8.9\beta = 10.5: 9\alpha,9\beta = 12.5: 13.13 = 1†: COC(Me) = CH₂ 3',4' = 1 bzw. 1.5: 3',3' = 1.5: COCH Me₂ = 7.$

[†] Proved by double resonance experiments.